Previous studies of the southern pine beetle, Dendroctonus frontalis Zimm., established that its population in east Texas responds to a delayed density-dependent process, whereas no clear role of climate has been determined. We tested two biological hypotheses for the influence of extreme temperatures on annual southern pine beetle population growth in the context of four alternative hypotheses for density-dependent population regulation. The significance of climate variables and their interaction with population regulation depended on the model of density dependence. The best model included both direct and delayed density dependence of a cubic rather than linear form. Population growth declined with the number of days exceeding 32°C, temperatures previously reported to reduce brood survival. Density dependence also changed with the number of hot days. Growth was highest in years with average minimum winter temperatures. Severely cold winters may reduce survival, whereas warm winters may reduce the efficiency of spring infestation formation. Whereas most previous studies have incorporated climate as an additive effect on growth, we found that the form of delayed density dependence changed with the number of days >32°C. The interaction between temperature and regulation, a potentially common phenomenon in ecology, may explain why southern pine beetle outbreaks do not occur at perfectly regular intervals. Factors other than climate, such as forest management and direct suppression, may have contributed significantly to the timing, severity, and eventual cessation of outbreaks since the mid-1950s.